Role of diffusing interstitials on dislocation glide in refractory body centered cubic metals

Author:

Fey Lauren T W,Hunter AbigailORCID,Beyerlein Irene JORCID

Abstract

Abstract In this work, we employ a phase field dislocation dynamics technique to simulate dislocation motion in body centered cubic refractory metals with diffusing interstitials. Two distinct systems are treated, Nb with O interstitials and W with H interstitials, to consider both relatively small and large atomic size interstitials. Simulations without and with driving stress are designed to investigate the role of interstitial type and mobility on the glide of edge- and screw-character dislocations. The simulations reveal the various short- and long-range dislocation-interstitial interactions that can take place and their dependency on interstitial type, site occupation, stress state, and mobility of the interstitials relative to dislocations. We show that while interstitial O increases the breakaway stress for both screw and edge dislocations in Nb, interstitial H in low H concentrations makes screw dislocations easier and the edge dislocations harder to move. The simulations find that screw dislocation glide is enhanced by the presence of interstitials in both systems. Edge dislocation glide is enhanced in W–H and inhibited in Nb–O.

Funder

Department of Energy National Nuclear Security Administration Stewardship Science Graduate Fellowship

Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory

Office of Naval Research

Publisher

IOP Publishing

Reference85 articles.

1. New opportunities in refractory alloys;Philips;Metall. Mater. Trans. A,2020

2. The use of tungsten in fusion reactors: a review of the hydrogen retention and migration properties;Causey;Phys. Scr.,2001

3. Tungsten as first wall material in fusion devices;Kaufmann;Fusion Eng. Des.,2007

4. Space fission reactor structural materials: choices past, present and future;Busby;JOM,2007

5. The physical and mechanical properties of niobium;Tottle;J. Inst. Metals,1957

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3