Atomic simulation for the effect of nano-cutting parameters on the 3D surface morphology of polycrystalline γ-TiAl alloy

Author:

Guo Zhaoting,Cao HuiORCID,Fu Rong,Yu Zhaoliang,Zhou Baocheng,Li Haiyan,Liu Jianhui,Feng RuichengORCID

Abstract

Abstract γ-TiAl alloy is one of the most potentially lightweight and high-temperature structural materials, and its machined surface quality has a significant effect on member service performance. Despite the extensive research on plastic removal and defect evolution under different cutting parameters, the forming mechanism of surface topography is not perfect under different cutting parameters. It is necessary to study the variation law of surface topography under the influence of different cutting parameters from the atomic scale. To this end, the influence of cutting depths and cutting speeds on the machined surface topography is investigated during nano-cutting of polycrystalline γ-TiAl alloys based on molecular dynamics simulation methods, and the effect of defective grain boundaries on cutting force fluctuations is analyzed. The results show that the effect of grain boundary on material deformation and dislocation obstruction is the main reason for the peak cutting force; with the increase of cutting depth, the average cutting force and friction coefficient increase, and both Sa and Sq show an increasing trend, which is the result of the joint action of plowing effect and grain boundary distribution; Sa and Sq show a decreasing and then increasing trend with the increase of cutting speed, and the critical cutting speed is 200 m s−1. This indicates that a smaller cutting depth and an appropriately higher cutting speed can effectively improve the surface quality of the polycrystalline γ-TiAl alloy, and optimize its nano-cutting process.

Funder

Natural Science Foundation of Gansu

Key Program of Natural Science Foundation of Gansu

Education department of Gansu Province: Postgraduate ”Innovation Star”

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3