Data-oriented description of texture-dependent anisotropic material behavior

Author:

Schmidt JanORCID,Biswas AbhishekORCID,Vajragupta NapatORCID,Hartmaier AlexanderORCID

Abstract

Abstract In metallurgical processes, as for example cold rolling or deep drawing of sheet metal, it is frequently observed that the crystallographic texture, and with it the anisotropic mechanical properties of a material, evolve dynamically. Hence, to describe such processes, it is necessary to model the functional dependence of anisotropic material parameters on the texture, which itself can vary locally with the different plastic strain histories. In this work, we present a new data-oriented approach to parametrize the anisotropic yield function Barlat Yld2004-18p from micromechanical simulations for different textures. This is accomplished by applying supervised machine learning (ML) methods to express the relationship between different crystallographic textures and the material parameters of the yield function. The crystallographic textures are chosen to vary continuously between a random texture on the one hand side, and a unimodal Goss or Copper texture the other. These crystallographic textures are rather common in sheet metal forming. In this way, furthermore, the transition from isotropic plasticity to a rather severe case of anisotropy can be modeled, which is thought to mimic the dynamical evolution of the texture in a metallurgical process. It is found that a regularization strategy is necessary to circumvent the known non-uniqueness between Yld2004-18p parameters and the resulting plastic yield behavior. After this regularization, a unique relationship between the material parameters and the yield onset is established, making it possible to train different ML models with excellent accuracy and generalization properties to anisotropic plastic material behavior. The trained ML models are able to reliably predict the coefficients of unknown textures even with a small amount of training data and, thus, to correctly represent the yield behavior resulting from the various textures. The proposed method represents an efficient extension of the description of anisotropic plastic yielding as it establishes a data-oriented way to explicitly consider microstructural parameters in the material description, which opens new pathways to formulate material models that include the process history.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Reference41 articles.

1. A review of the application of machine learning and data mining approaches in continuum materials mechanics;Bock;Front. Mater.,2019

2. Mechanik der festen Körper im plastisch-deformablen Zustand;von Mises;Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,1913

3. Mechanik der plastischen Formänderung von Kristallen;von Mises;Z. Angew. Math. Mech.,1928

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3