Energetic contributions to deformation twinning in magnesium

Author:

Kapan Enver,Alkan Sertan,Can Aydıner C,K Mason JeremyORCID

Abstract

Abstract Modeling deformation twin nucleation in magnesium has proven to be a challenging task. In particular, the absence of a heterogeneous twin nucleation model which provides accurate energetic descriptions for twin-related structures indicates a need to more deeply understand twin energetics. To address this problem, molecular dynamics simulations are performed to follow the energetic evolution of { 10 1 2 } tension twin embryos nucleating from an asymmetrically-tilted grain boundary. The line, surface and volumetric terms associated with twin nucleation are identified. A micromechanical model is proposed where the stress field around the twin nucleus is estimated using the Eshelby formalism, and the contributions of the various twin-related structures to the total energy of the twin are evaluated. The reduction in the grain boundary energy arising from the change in character of the prior grain boundary is found to be able to offset the energy costs of creating the other interfaces. The defect structures bounding the stacking faults that form inside the twin are also found to possibly have significant energetic contributions. These results suggest that both of these effects could be critical considerations when predicting twin nucleation sites in magnesium.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energetic Terms Associated with Twin Nucleation in Magnesium;The Minerals, Metals & Materials Series;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3