An integrated XFEM modeling with experimental measurements for optimizing thermal conductivity in carbon nanotube reinforced polyethylene

Author:

Bakalakos Serafeim,Kalogeris IoannisORCID,Papadopoulos Vissarion,Papadrakakis Manolis,Maroulas Panagiotis,Dragatogiannis Dimitrios A,Charitidis Costas AORCID

Abstract

Abstract The present paper investigates the thermal properties of carbon nanotube reinforced polyethylene and specifically its potential as highly conductive material. To this end, an integrated approach is proposed combining both numerical and experimental procedures. First, in order to study conductive heat transfer in two-phase materials with imperfect interfaces, a detailed numerical model is developed based on the extended finite element method, where material interfaces are modeled using the level set method. The thermal conductance at the interface of the carbon nanotubes and the polymer matrix is considered to be an unknown model parameter, the value of which is obtained by utilizing a series of experimental measurements of the composite material’s effective conductivity. The interfacial thermal conductance parameter value is inferred by calibrating the numerically predicted effective conductivity to the series of the corresponding experimental measurements. Once this parameter is estimated, the data-informed model is subsequently employed to provide reliable predictions of the effective conductivity of the composite for various weight fractions and configurations of carbon nanotubes in the parent material. Furthermore, microstructural morphologies that provide upper limits on the effective conductivity of the composite are identified via sensitivity analysis, demonstrating its potential as a highly conductive material.

Funder

European Regional Development Fund of the European Union

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3