Effects of vacancy concentration on the edge dislocation motion in copper by atomic simulations

Author:

Chen Wenjin,Li Run,Yao Songlin,Zhu Wenjun,Li Xiaofan,Fang Jingzhong,Wang KunORCID

Abstract

Abstract Nonequilibirum vacancy concentration widely appears in crystals under many extreme loading conditions, but receives relatively few attentions. In this work, we systematically explore the influence of a serial of different vacancy concentrations on the edge dislocation motion in copper using molecular dynamics (MD) simulations. Our result shows that the vacancy would hinder the dislocation motion, but the mechanism depends on the detailed dislocation motion regions. In thermally activated region, its influence is mainly reflected by modifying the dynamic and static threshold stresses required for edge dislocation initiation and continuous motion. In the linear region, the hindering mechanism is gradually transformed from phonon damping to vacancy pinning with the increasing vacancy concentration. In contrasts, the dislocation structure is almost unchanged under different vacancy concentrations in the non-linear region. Under high applied stress, high vacancy concentration will cause the dislocation velocity to jump back and forth between transonic and subsonic velocities more frequently. It has been attributed to the reactions between the dislocation and vacancies. The latter may result in dislocation local constriction and climbing. Moreover, a mobility equation suitable for describing edge dislocations at different non-equilibrium vacancy concentrations is proposed, which fits the MD results well. Finally, the roles of the nonequilibirum vacancy concentration on the edge dislocation motion is interpreted using the degrading elastic property and stacking fault energy.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Reference46 articles.

1. Plastic deformation of metals and alloys;Hansen,2014

2. The forces exerted on dislocations and the stress fields produced by them;Peach;Phys. Rev.,1950

3. Dynamic dragging of dislocations;Al’Shitz;Sov. Phys.-Usp.,1975

4. Motion of a dislocation acted on by a viscous drag through an array of discrete obstacles;Frost;J. Appl. Phys.,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3