Abstract
Abstract
Gamma lithium aluminate (LiAlO2) is a breeder material for tritium and is one of key components in a tritium-producing burnable absorber rod (TPBAR). Dissolution and precipitation of second phases such as LiAl5O8 and voids are observed in irradiated LiAlO2. Such microstructure changes cause the degradation of thermomechanical properties of LiAlO2 and affect tritium retention and release kinetics, and hence, the TPBAR performance. In this work, a microstructure-dependent model of radiation-induced segregation (RIS) has been developed for investigating the accumulation of species and phase stability in polycrystalline LiAlO2 structures under irradiation. Three sublattices (i.e. [Li, Al, V]I [O, Vo]II [Lii, Ali, Oi, Vi]III), and concentrations of six diffusive species (i.e. Li; vacancy of Li or Al at [Li, Al, V]I sublattice, O vacancy at [O, Vo]II sublattice, and Li, Al and O interstitials at [Lii, Ali, Oi, Vi]III interstitial sublattices; are used to describe spatial and temporal distributions of defects and chemistry. Microstructure-dependent thermodynamic and kinetic properties including the generation, reaction, and chemical potentials of defects and defect mobility are taken into account in the model. The parametric studies demonstrated the capability of the developed RIS model to assess the effect of thermodynamic and kinetic properties of defects on the segregation and depletion of species in polycrystalline structures and to explain the phase stability observed in irradiated LiAlO2 samples. The developed RIS model will be extended to study the precipitation of LiAl5O8 and voids and tritium retention by integrating the phase-field method.
Funder
The National Nuclear Security Administration of the U.S. Department of Energy
Tritium Target Program
Subject
Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Reference39 articles.
1. Irradiated tritium-bearing pellet characterization;Buck,2018
2. Recommendations for tritium science and technology research and development in support of the tritium readiness campaign;Senor,2017
3. Insights on amorphization of lithium aluminate from atomistic simulation;Setyawan;J. Phys. Chem. C,2017
4. A theory of radiation-induced segregation in concentrated alloys;Wiedersich;J. Nucl. Mater.,1979
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献