Effect of UEVC parameters on cutting surface quality and subsurface damage of single crystal γ-TiAl alloy via atomic simulation

Author:

Chen Yuncui,Zhou Baocheng,Zhu Huibin,Li Haiyan,Feng RuichengORCID,Cao HuiORCID,Lei ChunliORCID

Abstract

Abstract TiAl alloys are favored by the aerospace industry due to its excellent mechanical properties. However, its intrinsic brittleness, the use of conventional cutting (CC) process leads to the problems of high cutting force and high cutting temperature, which in turn affects the machined surface quality. Ultrasonic elliptical vibratory cutting (UEVC) has been proved to be an effective method to improve the surface quality and reduce the subsurface damage of difficult-to-machine materials. This paper compares the effects of CC and UEVC processes on cutting forces and subsurface damage based on molecular dynamics simulation methods, and the effects of elliptical vibration frequencies and amplitude ratios (AR) on surface morphology, roughness, and subsurface damage are investigated. The results show that the cutting force and subsurface damage in the UEVC process are reduced compared with that in the CC. Due to the vibration frequency, the subsurface damage is mainly dominated by atomic clusters, and both surface and subsurface masses show an optimization trend as the vibration frequency decreases. In terms of the AR, the surface quality is better at an AR of 2/3, with less activation of immovable dislocations, and the degree of subsurface damage decreases as the AR increases, and a relatively stable defective structure emerges when the AR is 1/2. The simulation results facilitate an atomic-scale comprehension of the removal mechanism of UEVC and further provide a theoretical foundation for the surface mass and subsurface damage mechanism and optimization of vibrational parameters of UEVC single crystal γ-TiAl alloy.

Funder

Natural Science Foundation of Gansu Province

Hongliu Outstanding Youth Foundation of Lanzhou University of Technology

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3