Microstructure evolution in 439 stainless steels under tensile: phase field simulation and experiment

Author:

Liu Yongbo,Wang MingtaoORCID,Liu QingchengORCID,Jin JianfengORCID,Peng QingORCID,Zong Yaping

Abstract

Abstract A combination of phase-field simulations and experimental validation is utilized to examine the effect of annealing tension on the microstructure evolution of 439 ferrite stainless steel (FSS). The study reveals the competing mechanisms of texture under tensile stress. Furthermore, a phase field model that incorporates anisotropic grain boundary (GB) energy and elastic energy is established. The microstructure of 439 FSS is created using a 3D reconstruction strategy based on the 2D electron backscatter diffraction characterization proposed in this work. Elastic constants are calibrated using actual alloy data and determined through molecular dynamics simulations. Finally, simulations of the grain coarsening process in 439 FSS are successfully achieved, considering both tensile stress and anisotropic GB energy effects. The results reveal that the presence of low-angle GBs deviates from Hillert model predictions in terms of grain size distribution and slows down the average grain size evolution over time. A significant deviation in the grain size distribution, compared to Hillert predictions, is observed in the textured system under tensile stress. The results of growth kinetics indicate that tensile stress promotes grain growth more than GB energy anisotropy retards microstructure evolution. Both experiment and simulation results consistently demonstrate that grains with <111>//ND orientation experience a better growth proficiency compared to grains of other orientations under tensile stress. This investigation offers fresh insights into managing the ferritic microstructure of FSS to enhance its formability capabilities.

Funder

111 Project

High-level Innovation Research Institute Program of Guangdong Province

National Natural Science Foundation of China

LiYing Program of the Institute of Mechanics, Chinese Academy of Sciences

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solute segregation in a moving grain boundary: a phase-field approach;Modelling and Simulation in Materials Science and Engineering;2024-06-26

2. Research progress on the effect of surface texture on the friction properties of CoCrMo alloys;Composite Interfaces;2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3