Strengthening of edge prism dislocations in Mg–Zn by cross-core diffusion

Author:

Niazi M RahbarORCID,Curtin W A

Abstract

Abstract The activation of prismatic slip in Mg and its alloys can be beneficial for deformation and forming. Experiments show that addition of Zn and Al solutes have a softening effect at/below room temperature, attributed to solutes facilitating basal-prism-basal cross-slip of prismatic screw dislocations, but a strengthening effect with increasing temperature. Here, the dynamic strain aging mechanism of cross-core diffusion within the prismatic edge dislocation is investigated as a possible mechanism for the strengthening at higher temperatures. First-principles calculations provide the required information on solute/dislocation interaction energies and vacancy-mediated solute migration barriers for Zn solutes around the dislocation core. Results for Mg–0.0045Zn show that cross-core diffusion notably increases the stress for prismatic edge dislocation glide but that the strengthening remains roughly 30% of the experimental strength. Other possible strengthening mechanisms of (i) solute drag of the prism edge dislocation and (ii) solute interactions and/or diffusion within the prismatic screw core, are then briefly discussed with some quantitative assessments pointing toward areas for future study.

Funder

National Centre of Competence in Research

Swiss National Science Foundation

NCCR

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3