Generalizing the Gurson model using symbolic regression and transfer learning to relax inherent assumptions

Author:

Birky DonovanORCID,Garbrecht KarlORCID,Emery JohnORCID,Alleman ColemanORCID,Bomarito GeoffreyORCID,Hochhalter JacobORCID

Abstract

Abstract To generate material models with fewer limiting assumptions while maintaining closed-form, interpretable solutions, we propose using genetic programming based symbolic regression (GPSR), a machine learning (ML) approach that describes data using free-form symbolic expressions. To maximize interpretability, we start from an analytical, derived material model, the Gurson model for porous ductile metals, and systematically relax inherent assumptions made in its derivation to understand each assumption’s contribution to the GPSR model forms. We incorporate transfer learning methods into the GPSR training process to increase GPSR efficiency and generate models that abide by known mechanics of the system. The results show that regularizing the GPSR fitness function is critical for generating physically valid models and illustrate how GPSR allows a high level of interpretability compared with other ML approaches. The method of systematic assumption relaxation allows the generation of models that address limiting assumptions found in the Gurson model, and the symbolic forms allow conjecture of decreased material strength due to void interaction and non-symmetric void shapes.

Funder

Sandia National Laboratories

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Reference40 articles.

1. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction;Gurson,1975

2. Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media;Gurson;J. Eng. Mater. Technol.,1977

3. Influence of voids on shear band instabilities under plane strain conditions;Tvergaard;Int. J. Fract.,1981

4. Neural network constitutive model for rate-dependent materials;Jung;Comput. Struct.,2006

5. Neural network for constitutive modelling in finite element analysis;Javadi;Comput. Assist. Mech. Eng. Sci.,2003

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3