Influence of anisotropic strain and temperature on hydrogen dissolution in tungsten

Author:

Han Quan-FuORCID,Zhang Ying,Yang Kun Jie,Liu Yue-Lin

Abstract

Abstract We have studied the double effects of anisotropic strain and temperature on the dissolution behavior of hydrogen (H) in tungsten (W) by using first-principles calculation combined with thermodynamic model. The strain and temperature effects are reflected by uniaxial/biaxial strain loading and vibrational Helmholtz free energy, respectively. We calculated the dissolution energy of the H atom at four different interstitial sites of TIS(1), TIS(2), OIS(1) and OIS(2). For TIS(2), OIS(1) and OIS(2), the dissolution energy of H changes monotonically as the biaxial strain rises from −5% to 5%. However, the dissolution ability of H at TIS(1) can be promoted by employing either compressive or tensile biaxial strain. There are more interesting results, the temperature-dependent dissolution energy of H at TIS(1) shows a significant decrease with the compressive biaxial strain loading, but this phenomenon does not occur at other three positions, i.e., TIS(2), OIS(1) and OIS(2). Besides, with the same anisotropic strain loading, the dissolution energy of H for all four kinds of positions increase as the temperature rises from 300 to 1800 K, which is mainly originated from the contribution of the vibrational Helmholtz free energy. Our results indicate that H atoms are more easily to accumulate in the anisotropic strain enrichment region in W as the temperature rises, which will make it more easier to form H bubbles in W.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3