Solute segregation to near-coincidence site lattice grain boundaries in α-iron

Author:

Hendy Mohamed A,Hamza Mohamed HORCID,Hegazi Hesham A,Hatem Tarek MORCID

Abstract

Abstract Coincidence site lattice grain-boundaries (CSL-GBs) are commonly observed in steel alloys and play a major role in controlling their mechanical properties. In practice, CSL-GBs do experience deviations from their ideal configurations, where the deviation from the ideal symmetry plane can be modeled as sub-boundary network of misfit dislocations. In this study, segregation energy of hydrogen and carbon atoms to ∑3 (111), ∑3 (112), and ∑5 (310) CSL-GBs and their deviated configurations within Brandon’s criterion range in α-iron is studied using molecular statics simulations. Thereafter, through utilizing Rice–Wang model the change of the cohesive GB energy is computed and correlated to misfit dislocations structures. The results show significant correlation between the crystallographic aspects of the GBs and the hydrogen/carbon embrittlement/strengthening effect. While the ideal CSL-GBs consistently show the highest resistance to hydrogen enhanced decohesion effect, the deviations from the ideal configurations accompanied by misfit dislocation core structures along the boundaries show high solute carbon strengthening.

Funder

Academy of Scientific Research and Technology

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solute segregation in a moving grain boundary: a phase-field approach;Modelling and Simulation in Materials Science and Engineering;2024-06-26

2. Entropy-Driven Grain Boundary Segregation: Prediction of the Phenomenon;Metals;2021-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3