Mobility of dislocations in FeNiCrCoCu high entropy alloys

Author:

Shen YixiORCID,Spearot Douglas EORCID

Abstract

Abstract Dislocations in high entropy alloys (HEAs) are wavy and have natural pinning points due to the variable chemical and energetic landscape surrounding the dislocation core. This can influence the critical shear stress necessary to initiate dislocation motion and the details associated with sustained dislocation glide. The objective of this work is to determine the relationship between Schmid shear stress and dislocation velocity in single phase FCC FeNiCrCoCu HEAs using molecular dynamics simulations, with comparisons made to dislocation motion in homogeneous Ni and Cu. Simulations are performed for four different dislocation character angles: 0° (screw), 30°, 60° and 90° (edge). Several key differences are reported, compared to what is previously known about dislocation motion in homogeneous FCC metals. For example, the drag coefficient B in the phonon damping regime for HEAs has a nonlinear dependence on temperature, whereas this dependence is linear in Ni. Mobility relationships between different types of dislocations common in homogeneous FCC metals, such as the velocity of screw and 60° dislocations being lower than edge and 30° dislocations at the same shear stress, do not necessarily hold in HEAs. Dislocation waviness is measured and is found to correlate with the ability of dislocations to glide under an applied shear stress, including the temperature dependence of the drag coefficient B. These results confirm that the influence of HEA chemical complexity on dislocation motion is important and this data can be used to guide development of analytical or empirical models for dislocation mobility in HEAs.

Funder

University of Florida

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modelling and Simulation

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3