Crystal orbital overlap population based on all-electron ab initio simulation with numeric atom-centered orbitals and its application to chemical-bonding analysis in Li-intercalated layered materials

Author:

Takahara IzumiORCID,Shibata KiyouORCID,Mizoguchi TeruyasuORCID

Abstract

Abstract Crystal orbital overlap population (COOP) is one of the effective tools for chemical-bonding analysis, and thus it has been utilized in the materials development and characterization. In this study, we developed a code to perform the COOP-based chemical-bonding analysis based on the wave function obtained from a first principles all-electron calculation with numeric atom-centered orbitals. The chemical-bonding analysis using the developed code was demonstrated for F2, Si, CaC6, and metals including Ti and Nb. Furthermore, we applied the method to analyze the chemical-bonding changes associated with a Li intercalation in three representative layered materials: graphite, MoS2, and ZrNCl, because of their great industrial importance, particularly for the applications in battery and superconducting materials. The COOP analysis provided some insights for understanding the intercalation mechanism and the stability of the intercalated materials from a chemical-bonding viewpoint.

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3