Atomic configurations and energies of Mg symmetric tilt grain boundaries: ab initio local analysis

Author:

Xu ZhuoORCID,Tanaka Shingo,Kohyama MasanoriORCID

Abstract

Abstract Mg alloys are highly expected for the wide application in the next-generation industry, while significant improvement of the plasticity of polycrystalline Mg alloys is crucial. For this purpose, it is essential to get insights into the atomic configurations, energetics, and mechanical responses of Mg grain boundaries (GBs). In this study, we investigated the overall features of atomic configurations and energies of [ 1 1 ¯ 00 ] and [ 1 2 ¯ 10 ] symmetric tilt GBs in hcp Mg by density-functional theory. We systematically constructed atomic models of coincidence-site lattice GBs by the arrangement of structural units in the full range of rotation angles. We observed that special GBs show clear cusps in both the GB-energy and excess-volume curves against the rotation angle. The reason of the stability/instability of each GB configuration was analyzed by ab initio local energy and local stress based on Bader partitioning. The features of local energies and stresses in Mg GBs are quite different from those in other materials with covalent or partial-covalent bonding nature. We observed substantial variations of local energies, local stresses and Bader charges of GB atoms, and charge inhomogeneity in a GB region, reflecting the structural disorder. Stable GBs are characterized by modest ranges of such variations and by moderate charge homogeneity. These results could be utilized in general to understand the interface stability and deformation mechanism of Mg and other simple metals.

Funder

Creation of new functional devices and high-performance materials to support next-generation industries; CDMSI

JSPS KAKENHI

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transferability of atomic energies from alchemical decomposition;The Journal of Chemical Physics;2024-02-06

2. Boundary plane-oriented grain boundary model generation;Modelling and Simulation in Materials Science and Engineering;2022-03-30

3. Atomistic structures of 〈0001〉 tilt grain boundaries in a textured Mg thin film;Nanoscale;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3