Formation and dissociation of shear-induced high-energy dislocations: insight from molecular dynamics simulations

Author:

Chen NanjunORCID,Hu ShenyangORCID,Setyawan Wahyu,Gwalani Bharat,Sushko Peter V,Mathaudhu Suveen N

Abstract

Abstract Solid-phase processing (SPP) allows one to create complex microstructures, not achievable via thermal processing alone. The resulting structures exhibit a rich palette of defects, both thermal and non-thermal, including defect substructures, such as dislocation networks. It is essential to understand the mechanisms of deformation and defect structure formation to guide SPP towards achieving desired microstructures and material properties. In this study, large-scale molecular dynamics simulations are used to investigate the effects of inhomogeneous strain distribution, that mimics deformation conditions of tribological tests, on the evolution of defects under severe shear deformation in polycrystalline Al. Analysis of defect nucleation and reaction pathways reveals that strong geometric constraints suppress the nucleation and slide of low energy dislocation 1/2⟨110⟩{111} but promote the nucleation and slide of high energy dislocations, such as 1 1 ¯ 0 (001) and 1/2 1 1 ¯ 2 ¯ (1 1 ¯ 1). A rough contact surface, characteristic to tribological tests, imposes an inhomogeneous stress field leading to inhomogeneous defect substructures due to location-dependent activation of slip systems. The results suggest that high-energy dislocations can dominate the evolution of grain structures in highly constrained environments, which should be considered in modeling plastic deformation and grain refinement during SPP.

Funder

Pacific Northwest National Laboratory

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3