Rational design of the micron-sized particle size of LiMn0.8Fe0.2PO4 cathode material with enhanced electrochemical performance for Li-ion batteries

Author:

Yang LeiORCID,Chang Wengui,Xie Chengen,Jin Juncheng,Xia Yujia,Yuan Xueqin

Abstract

Abstract Recently, micron-sized LiMn1−xFexPO4 cathode materials have attracted attention due to its better rate capability and higher tap density than the nano-sized ones. However, the influence of the particle size on the energy density of micron-sized LiMn1−xFexPO4 is still unknown. In this paper, we report the optimal particle size of the micron-sized LiMn0.8Fe0.2PO4 with enhanced electrochemical performance as cathode material in lithium-ion batteries (LIBs). The LiMn0.8Fe0.2PO4 sample with the particle size of ∼9.39 μm delivers the initial discharge capacity of 124 mAh g−1 at 0.2 C rate with high capacity retention of 94.35% after 100 cycles, which is higher than that with the particle sizes of ∼2.71 μm, ∼3.74 μm, ∼6.41 μm or ∼16.31 μm. This structure with the specific capacity of 122 mAh g−1 at 0.5 C rate and 106 mAh g−1 at 3 C rate also exhibits excellent rate performances. The improved electrochemical performances are mainly derived from its fast Li+ diffusion, which causes the higher ionic conductivity. The LiMn0.8Fe0.2PO4 sample with the particle sizes of ∼9.39 μm also shows the highest tap density (0.68 g cc−1) among the as-prepared samples. This finding provides a new way to enhance the energy density of other cathode materials.

Funder

Anhui Provincial Natural Science Foundation

the Scientific Research Foundation for High-Level Talents of West Anhui University

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3