Abstract
Abstract
Coir fibre, derived from the husk of coconuts, is a natural resource and they are biodegradable and renewable. By incorporating them, any product can become more lightweight and durable, meeting the global desire for eco-friendly and efficient designs. This study has the potential to significantly alter the design of components such as switches and enclosures and it has an international research impact on engineering applications. Coir fibres and Hexagonal-Boron Nitride (h-BN) possess superior mechanical, thermal and physical qualities when reinforced with polymers. Hence novel study is carried out to examinecoir fibre/h-BN reinforcement in epoxy polymer composites. Response Surface Methodology via Box-Behnken Design (BBD) is utilized to investigate the mechanical properties such as Tensile Strength, Impact Strength and Young’s Modulus of coir fibre/h-BN reinforced epoxy polymer composite. The effect of input parameters onresponse is evaluated through regression equation and analysis of variance by using statistical Minitab software. The response optimization represents the maximum Young’s modulus (1597 MPa) by combining coir fibre (5 wt%), Coir fibre powder size (75 μm) and h-BN (1 wt%). The response optimization portrays the maximum Ultimate Tensile strength(36.83 MPa) by combining coir fibre (1 wt%), coir fibre powder size (220 μm) and h-BN (3.78 wt%). The response optimization reveals the maximum Impact strength (98.35 J m−2) by combining coir fibre (5 wt%), coir fibre powder size (225 μm) and h-BN(1 wt%). This work emphasises the use of composite materials that are environmental friendly in a variety of industries such as automotive, electrical, etc.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献