Effect of different casting techniques on the microstructure and mechanical properties of AE44-2 magnesium alloy

Author:

Le TaiheORCID,Wei QiORCID,Wang Jinhui,Jin Peipeng,Chen Mengru,Ma JiaxuanORCID

Abstract

Abstract AE44-2 magnesium (Mg) alloys were fabricated by gravity casting (GC), high pressure die casting (HPDC), and high vacuum assisted high pressure die casting (HVHPDC). The effect of these three different casting techniques on the microstructure evolution, texture, and mechanical properties of the AE44-2 alloy was investigated. The results showed that the different cooling rates in these three different casting techniques led to the different distribution and morphology of the precipitated phases, and rapid cooling contributed to a dense network distribution of the phases as well as grain refinement. In addition, the faster cooling rate resulted in a decrease of the dislocation accumulation. The addition of vacuum assistance in the HPDC process increased texture strength. The average grain size of the HPDC alloy was reduced by 90.4% compared to the GC alloy and the yield strength increased by 85.7 MPa due to rapid cooling. The elongation of the HVHPDC alloy increased by 2.3% compared to the HPDC alloy due to vacuum assistance. Moreover, the mechanical properties improved for the alloys in the order of GC < HPDC < HVHPDC because of gran refinement caused by the faster cooling rate. Based on the analysis of the strengthening mechanisms, the rapid cooling process of the HPDC alloy led to better strengthening compared to the GC alloy. In addition, grain refinement contributed to 82.1% of the strengthening mechanism.

Funder

Qinghai Provincial Science and Technology Key Program

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3