Investigation of tribological, physicomechanical, and morphological properties of resin-based friction materials reinforced with Agave americana waste

Author:

Wu SiyangORCID,Zhuang Jian,Wu Qian,Qi Hongyan,Zhao JialeORCID,Guo MingzhuoORCID

Abstract

Abstract In recent years, natural fibers and their composites have attracted the attention of researchers due to environmental awareness and sustainable development. It is crucial to identify new natural fibers as potential reinforcement in polymer composites. This study was aimed to investigate the potential use of Agave americana fibers as a reinforcing component in resin-based friction materials. The tribological, physicomechanical, and morphological characteristics of materials containing different A. americana fiber contents were systematically evaluated. Experimental results indicated that fiber addition effectively improved the fade resistance, recovery behavior, and wear resistance of these materials. From the perspective of overall performance, a friction composite containing 5-wt% fibers possessed the optimal friction stability and wear resistance, exhibiting a fade rate of 13.6%, recovery rate of 97.5%, and sum wear rate of 2.340 × 10–7 cm3·N−1·m−1. Furthermore, sample worn surface morphologies were examined by scanning electron microscope, which revealed that appropriate fiber inclusion helped in the formation of secondary contact plateaus on friction surfaces. In addition, this fiber content significantly reduced abrasive and adhesive wear, which were conducive to good tribological behaviors of friction materials. This research provided a promising method for environment-friendly applications of A. americana waste.

Funder

National Key Research and Development Project of China

China Postdoctoral Science Foundation

Science and Technology Development Plan Project of Jilin Province

Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3