Optimization of the thermophysical properties of the thermal barrier coating materials based on GA-SVR machine learning method: illustrated with ZrO2 doped DyTaO4 system

Author:

Zhu WenjieORCID,Gan Mengdi,Ye Bo,Xiong Xin,Feng Jing,Chong Xiaoyu

Abstract

Abstract It is a critical issue to reduce the thermal conductivity and increase the thermal expansion coefficient of ceramic thermal barrier coating (TBC) materials in the course of their utilization. To synthesize samples with different composition and measure their thermal conductivity by the traditional experimental approaches is time-consuming and expensive. Most classic and empirical models work inefficiently and inaccurately when researchers attempt to predict the thermophysical properties of TBC materials. In this research project, we tentatively exploit a Genetic Algorithm-Support Vector Regression (GA-SVR) machine learning model to study the thermophysical properties, illustrated with the potential TBC materials ZrO2 doped DyTaO4, which has resulted in the lowest thermal conductivity in rare earth tantalates RETaO4 system. Meanwhile, we employ statistical parameters of correlation coefficient (R2) and mean square error (MSE) to evaluate the accuracy and reliability of the model. The results reveal that this model has brought about high correlation coefficients of thermal conductivity and thermal expansion coefficient (99.8% and 99.9%, respectively), while the MSE values are 0.00052 and 0.00019, respectively. The doping concentration of ZrO2 was optimized to reach as low as 0.085–0.095, so as to reduce their thermal conductivity further and increase their thermal expansion. This model provides an accurate and reliable option for researchers to design ceramic thermal barrier coating materials.

Funder

Rare and Precious Metals Material Genetic Engineering Project

National Natural Science Foundation of China

Yunnan Fundamental Research Project

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3