Mechanical behavior and corrosion properties of Ti-7Mo-8Nb alloy for biomedical applications

Author:

Saood Modar,Ibrahim Khaled M,El-kashif Emad,Shoeib Madiha,Elshalakany Abobakr,Mohamed Mamdouh SORCID

Abstract

Abstract The present study investigates the microstructural, mechanical and corrosion properties of Ti-7Mo-8Nb alloy manufactured through powder metallurgy. The performance of the developed alloy is benchmarked against cast Ti-6Al-4V. Microstructure examination of Ti-7Mo-8Nb revealed a Widmanstätten structure containing equiaxed β grains along with acicular α phase. In regards to the mechanical properties, Ti-7Mo-8Nb possessed higher compressive yield strength, higher hardness but lower elastic modulus than Ti-6Al-4V. The elastic modulus of Ti-7Mo-8Nb was almost 44.9 GPa, approaching the usually desired value of 30 GPa for cortical bone. Wear test revealed also a lower wear rate for Ti-7Mo-8Nb. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) experiments were carried out for both Ti-7Mo-8Nb and Ti-6Al-4V immersed in Hank’s solution as a simulated body fluid at a temperature of 37 °C. Both experiments revealed higher corrosion resistance for Ti-7Mo-8Nb manifested by lower corrosion and passivation current densities, higher negative phase angle, higher impedance modulus and larger Nyquist semicircle diameter as compared to Ti-6Al-4V alloy. The superior corrosion properties of Ti-7Mo-8Nb are indicative of the development of a more stable passive layer on the surface. The fitting of EIS data into an equivalent circuit suggested the formation of a double oxide layer consisting of an inner compact base passive film along with an external porous layer. The presented combination of high strength, high corrosion resistance along with low elastic modulus puts forward the Ti-7Mo-8Nb alloy as a good candidate for orthopedic biomedical applications.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Biomedical applications of titanium and its alloys;Elias;JOM,2008

2. Classification of biomaterial functionality;Arjunan;Reference Module in Materials Science and Materials Engineering.,2020

3. The neurotoxicity of environmental aluminum is still an issue;Bondy;Neurotoxicology,2010

4. Vanadium: a review of the reproductive and developmental toxicity;Domingo;Reproductive Toxicology,1996

5. Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate;Pilliar;J. Biomed. Mater. Res.,1979

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3