Grinding characteristics during ultrasonic vibration assisted grinding of alumina ceramic in selected dry and MQL conditions

Author:

Das SreethulORCID,Pandivelan CORCID

Abstract

Abstract Ultrasonic vibration assisted grinding (UAG) has proven to lower the forces and improve the ground surface quality while shaping difficult to grind materials such as ceramics. A systematic study of UAG of alumina ceramic using a metal bonded diamond grinding wheel has been performed here. Taguchi’s L18 array based experimentation has been performed to study the effect of UAG parameters. During UAG, the vibration amplitudes of 6 and 12 microns have been used and the frequency has been kept at 20 kHz. From these experiments, optimum parameters for UAG have been identified using Grey relational analysis. Mathematical models generated using regression analysis have been found to correlate the experimental data with good accuracy. A comparison of the grinding forces and roughness of the surfaces generated in dry and minimum quantity lubrication (MQL) conditions in both conventional grinding and optimal condition in UAG has been performed to identify the beneficial effects of providing vibration to the workpiece. The surface quality has been evaluated using 3D roughness data, 3D plots and SEM images of the ground surface. By examining nature of the ground surface and kurtosis (Sku) values of the surface profile, it has been concluded that UAG reduces brittle fracture and facilitates material removal by ductile mode for alumina. The desired condition of least machining forces and highest surface quality has been achieved during the combination of UAG and MQL.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3