Thermal/kinetic study of the formation mechanism of NbC-Fe composite layer on the surface of GCr15 prepared by hot pressure diffusion

Author:

Zhao NanaORCID,Yao Teli,Wang Zihan,Shan Rui,Ren Congcong,Liu Heguang,Li Shujuan,Xu Yunhua,Cui ZhenORCID

Abstract

Abstract In this study, an NbC-Fe composite layer is in situ prepared on the surface of GCr15 bearing steel. The formation mechanism of the composite layer was investigated in terms of thermodynamics, dynamics, and crystal structure transformation processes during the in situ reaction. According to computational thermodynamics, the reaction at 1150 °C–1200 °C allows NbC, Fe3C, Cr3C2, Cr7C3, and Cr23C6 phases to spontaneously react and stabilize in the Fe-C-Nb-CR system. The functional relationship between the growth thickness, time, and temperature of the NbC-Fe composite layer was obtained experimentally and via computational dynamics. Particularly, the growth activation energy, Q, of the NbC-Fe composite layer was calculated to be 367.06 kJ mol−1. The combination of computational thermodynamic/kinetic research and experimental observation of crystal transformation data revealed that the formation mechanism of NbC in the NbC-Fe layer on the surface of GCr15 caused the C atoms in the bearing steel diffuse into the Nb plate and occupy the octahedral gap of the Nb unit cell to form NbC. In the formation mechanism of the NbC-Fe composite layer, C and Fe atoms partially migrated from the pearlite and diffused towards the direction of the Nb plate to form the NbC-Fe composite layer.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi Province

China Postdoctoral Science Foundation

Xi'an Science and Technology Plan Project

Innovation Capability of Shaanxi Province Supporting project

Research and Development Program of Shaanxi Province

National University Student Innovation and Entrepreneurship Project

Science and Technology Talents Program of Shaanxi Province

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3