Abstract
Abstract
The mixture design method was used to model the physical and mechanical properties of ethylene-octene copolymer (EOC) nanocomposite containing organically modified montmorillonite (OMT) which were cross-linked dynamically by various amounts of dicumyl peroxide (DCP). A mixture design technique with three components was employed to assess the correlations between the selected properties of the nanocomposites and the component values. For this purpose, EOC, OMT and DCP content were selected as the components. The influences of these components were studied on the tensile strength, modulus at 100% strain, strain at break, x-ray peak intensity and the initial slope of the logarithm of storage modulus versus the logarithm of angular frequency of the nanocomposites prepared. The regression equations of the models as well as contour plots were generated for the properties studied. Good agreements were found between the experimental results and those predicted by the models. The contour plots of each property were overlaid within the applied constraints to discover the combination of factor ranges that provided the nanocomposite with optimal performance.
Funder
Iran Polymer and Petrochemical Institute
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献