Highly compressible graphene aerogel with high thermal conductivity along both in-plane and through-plane directions

Author:

Lv PengORCID,Miao Haipeng,Ji Chenglong,Wei Wei

Abstract

Abstract Graphene-based thermal interface materials (TIMs), such as horizontal graphene papers and vertical graphene monoliths, commonly possess high thermal conductivity (TC) only along either in-plane or through-plane direction due to their high anisotropy structure. Three-dimensional (3D) graphene monoliths with interconnected network can extend the excellent thermal transport performances of two-dimensional graphene to macro monoliths along multi-directions. However, the high porosity of 3D graphene monoliths usually leads to low TC. Here, highly compressible graphene aerogels (HCGAs) with closely packed cell walls and regularly cellular structure were prepared. The HCGAs can be highly compressed (95% compressive strain) to reduce the porosity while maintaining the continuously thermal transport paths. Significantly increased TC along both in-plane and through-plane directions can be obtained by directly mechanical compression of the aerogels. HCGAs with initial density of 11.5 mg cm−3 at 95% compressive strain possess in-plane TC of 167.2 W m−1K−1 and through-plane TC of 46.8 W m−1K−1, which outperforms other carbon-based TIMs reported previously.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3