Numerical investigation of CuSbS2 thin film solar cell using SCAPS-1D: enhancement of efficiency on experimental films by defect studies

Author:

Valeti Naga Jyothi,Prakash Krishna,Singha Monoj KumarORCID,Kumar ArvindORCID

Abstract

Abstract The study of photovoltaic solar cells has been an exciting field of research because of their environmentally friendly nature. Scientists are continuously searching for new methods to develop solar cells that are highly efficient and cost-effective. One promising option is the use of Copper Antimony Sulphide (CuSbS2) based ternary compound semiconductor in ultrathin film photovoltaic cells. This material has a high absorption coefficient, low cost, and is readily available in the earth’s crust. These characteristics make it an ideal candidate for use as a thin-film absorber layer in solar cells. In this work, FTO/CdS/In2S3/CuSbS2/Spiro-OMeTAD/Au device is proposed to improve the efficiency of experimentally designed CuSbS2-based thin film solar cells using numerical modeling. Device simulation was carried out using SCAPS-1D software, and the illumination spectrum used for this optimization was 1.5 AM. The simulated results from SCAPS-1D were compared to the experimental data. After optimizing the device parameters all the electrical parameters of the solar cell were improved. The optimized CuSbS2-based device shows power conversion efficiency (PCE) of 21.11% with short circuit current density (Jsc) of 20.96 mA cm−2, open circuit voltage (Voc) of 1.23 V, and fill factor (FF) of 81.84%. Based on the simulation results, it is possible to increase the performance of the device by varying different parameters such as the defect density of each layer, interfacial defect density, thickness, and doping concentration.

Publisher

IOP Publishing

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3