Abstract
Abstract
Objective service load is the load pattern of cortical bone in practical conditions. The objective service load conditions of cortical bone are complicated, usually including two or more load patterns. The mechanical behavior and deformation mechanism of cortical bone material under coupling load pattern and single load pattern are diametrically different. However, nowadays, researches on the mechanical response of cortical bone have been heavily focused on the single load pattern, which couldn’t reveal the potential deformation mechanism accurately. For the purpose of obtaining the objective mechanical properties under complicated loading patterns, the mechanical response and deformation mechanism of bone material under compression-bending coupling load were investigated by in-situ test. The research shows that bending strength increased under the compression-bending coupling load than the single bending load. By in-situ observation, the variations of surface strain distribution and cracks directions were the potential reasons for the increase of the bending strength. It was found that the cracks changed from transverse fracture to integrated patterns with transverse fracture and longitudinal fracture. Larger fracture range and tortuous crack propagation increased the fracture energy dissipation, which led to an enlarged bending strength under the compression-bending coupling load. Through theoretical analysis and numerical calculation, the impeded effect to the increasing of bending deflection was dominant before the final fracture with the adding of the compression load. The numerical calculation result was consistent with the result of the experiment. This present work would provide new references to further studies on the mechanical behavior of cortical bone under complicated loading patterns.
Funder
Research and development of key common technologies and engineering projects of major scientific and technological achievements of Hefei City
National Natural Science Foundation of China
Natural Science Funds for Youth Fund Project
Natural Science Youth Fund Project of Anhui Agricultural University
Anhui Province Key Research and Development Project
Stabilize and introduce talent research funding project of Anhui Agricultural University
Key Projects of Natural Science Research of Anhui Provincial Department of Education
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献