Impact of nitrogen annealing on the electrical properties of HgCdTe epitaxial films

Author:

Jin DapengORCID,Zhou Songmin,Chen Lu,Lin Chun,He Li

Abstract

Abstract The nitrogen annealing of HgCdTe materials grown by molecular beam epitaxy (MBE) was carried out to manipulate their electrical properties. The results show that the annealing temperature, annealing time and cooling process all have significant influences on the electrical properties of HgCdTe materials. Excessive annealing temperature or long annealing time can make voids emerge on the surface of the CdTe passivation layer. Carrier concentration and mobility vary exponentially with annealing time and they reach an equilibrium value determined by annealing temperature over a long annealing duration. Moreover, time constants are given and a longer time is needed for mobility to reach an equilibrium value than carrier concentration. The relationship between equilibrium carrier concentration and annealing temperature is given and the activation energy under nitrogen annealing is calculated as 0.63 eV. For a long cooling duration, Hg vacancies are annihilated by Hg atoms diffusion, which makes carrier concentration lower and mobility higher. In addition, some outlier data were found in this experiment and explained by the combination between Te antisites and Hg vacancies.

Funder

University of Chinese Academy of Sciences

Shanghai Institute of Technical Physics, Chinese Academy of Sciences

ShanghaiTech University

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3