Constitutive modeling for elevated temperature flow behavior of a novel Cr-Si alloyed hot stamping steel

Author:

Zhu Rong,Yang Xiaoyu,Mi ZhenliORCID,Jiang HaitaoORCID,Yang Yonggang,Wang Mai,Zhang Qi,Wu Yanxin,Li Lei

Abstract

Abstract The flow behavior of a novel Cr-Si alloyed hot stamping steel (Cr-Si steel) at elevated temperature was investigated via isothermal compression tests on a Gleeble-3500 thermomechanical simulator with a temperature range of 600 ∼ 900 °C and a strain rate range of 0.1 ∼ 10 s−1. Subsequently, the Arrhenius-type constitutive model, comprising strain compensation, was established in accordance with the friction and adiabatic heating corrected stress-strain curves. Furthermore, the predictability and prediction accuracy of the constitutive model were verified. The results reveal that at a constant strain rate, the flow stress of the Cr-Si steel initially increases as the strain increases before tending to stabilize, owning to the combined effects of work hardening and dynamic recovery. The peak flow stresses decrease as the temperatures increase and the strain rates decrease. The constitutive model can accurately predict the elevated temperature constitutive relationship of the Cr-Si steel during the hot stamping process.

Funder

National Natural Science Foundation of China

Key R&D Program of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3