Decoration of cellulose nanocrystals with iron oxide nanoparticles

Author:

Chen Lyufei,Sharma Shruti,Darienzo Richard E,Tannenbaum RinaORCID

Abstract

Abstract Cellulose nanocrystals (CNCs) are excellent candidates for the design and development of multifunctional biomaterials systems to be used in a variety of technologically relevant applications. They may be used as the structural reinforcement phase of polymer matrices, act as catalyst support constituents, as well as drug delivery vectors. Modifying and functionalizing CNCs by introducing specific functional components can impart electronic, magnetic, catalytic, fluorescence and optical properties to the system. In this work we report the successful in situ tethering of iron oxide nanoparticles (IONPs) onto CNCs by the thermal decomposition of Fe(CO)5 in a H2O/DMF suspension. Following this procedure, IONPs consisting of mixtures of Fe3O4 and Fe2O3 with an average diameter of 20 nm were attached to the CNCs. The type of iron oxide species that was generated was determined by selected area electron diffraction (SAED) and energy dispersive spectroscopy (EDS), and the particle size was evaluated by transmission electron microscopy (TEM). Raman spectroscopy was used to characterize the presence and the nature of the molecular interaction between the IONPs and the CNCs.

Funder

U.S. DOE Office of Science Facility

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3