Abstract
Abstract
The behavior of a liquid on a solid surface has shown great interest in a variety of applications related to surfaces and its interfaces. In this paper, the wetting behavior of DI water on micropatterned silicon surfaces fabricated through photolithography and deep reactive ion etching (DRIE) is investigated. Micro pillars of both solid and hollow geometries at a varying pitch and its arrangement in an array has been examined with static contact angle measurement. However, the results concluded that the arrangement of pillars in an array plays an important role as hollow geometries in the case of chain type arrangement provide both hydrophilic and hydrophobic surface properties, while the same hollow geometries in case of zig-zag orientation experiences only hydrophobicity at a varying pitch. Decreased WCA with increased pitch has been observed in the case of a zig-zag arrangement, due to the effect of capillary and gravitation forces. Also the existence of air pockets at sharp corner in the case of hollow square assists in providing maximum contact angle (WCA = 144°) as compared to hollow circle and solid geometries; thus a non-sticky behavior would be possible between the droplet and the patterned surface, due to less adhesion force.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献