Abstract
Abstract
Slurry erosion presents a critical challenge in hydrocarbon and cement processing industries, as well as in abrasive water jet cutting systems, leading to diminished operational efficiency and elevated maintenance costs. This study investigates the erosive wear behavior of Poly-Lactic Acid (PLA) fabricated with varying infill microtextures—zigzag, concentric, and grid—under diverse pH conditions (2.73, 7.75, and 10.15) using garnet particles as the erodent. The results demonstrate that optimal operational conditions for PLA are achieved with a grid microtexture, a pH of 7.75, and a 325 μm erodent size. Conversely, the most severe wear occurs under a pH of 10.15, a 600 μm erodent size, and a zigzag microtexture. The grid microtexture is the most effective in minimizing erosion, while the zigzag pattern shows a 16.68% increase in wear when compared to the grid microtexture. Additionally, a shift from a slightly basic to a highly acidic environment increases wear by 1%, whereas a transition to a highly basic environment leads to a 32.6% increase in erosion within the grid microtexture. The study highlights the significant contributions of infill microtexture (64%), erodent size (23.7%), and pH value (11%) to the overall erosion rate.
Funder
King Saud University, Riyadh, Saudi Arabia
Researchers Supporting Project