Gradient self-organized dislocation in expanded austenite layer during low-temperature nitriding

Author:

Che H L,Yang X,Liu H Y,Lei M KORCID

Abstract

Abstract A typical nitrogen expanded austenite layer is formed by plasma-based low-energy nitrogen ion implantation (PBLEII) on AISI 304L austenitic stainless steel at a moderate temperature of 380 °C. The dislocation self-organization structure in the nitrogen expanded austenite layer is characterized as an evolution from partial and Lomer-Cottrell dislocations in the inner layer near the interface to multilayer stacking faults in the outer nitrided layer. The self-organized dislocation density and forms are essentially dependent on the plastic deformation, strain-gradient, and nitrogen-related stacking fault energies, respectively, due to the constrained expansion in the nitrided layer. As the nitrogen concentration in the austenitic matrix increases, the stacking fault energy gradually decreases, resulting in the transformation of the defect from Lamer-Cottrell dislocations to multilayer stacking faults. The appropriate stress, which is associated with orderly stress relief during dislocation self-organization, preserves the integrity of the nitrided layer with a combinedly improved in wear and corrosion resistance. Nitriding-induced dislocation self-organization is basically explored as the formation mechanism of the nitrogen expanded austenite layer, contributing to the development of the specific low-temperature nitriding austenitic steel.

Funder

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3