Precipitation behavior and tensile properties of A356.2 alloy with different high temperature pre-precipitation temperatures

Author:

Ding YumingORCID,Chang Liang,Guo Binxu,Ding JianORCID,Chen Xueguang,Tang Ying,Song KaihongORCID,Xia Xingchuan

Abstract

Abstract In order to understand the effect of high temperature pre-precipitation (HTPP) temperature on the precipitation behavior and tensile properties of A356.2 alloy treated by Al-6Sr-7La master alloy, SEM, TEM and tensile tests were applied to investigate the evolution of fracture morphology and precipitates of the alloys under different HTPP temperatures. The results showed that ultimate tensile strength (UTS) and yield strength (YS) of the alloys decrease and elongation (El) increases with HTPP temperature decreasing. When HTPP temperature decreased from 510 °C to 470 °C coarsen coherent β″ phase appear in α-Al matrix, continue to decrease HTPP temperature to 450 °C the main precipitate transformed into semi-coherent β′ phase, leading to the change in mechanical properties. In addition, coarsening and transformation of the precipitate were attributed to the reduction of Si concentration which decreases with HTPP temperature decreasing. Moreover, Si nanoparticles precipitated in α-Al matrix, leading to the decrease of UTS and YS to certain extent due to reducing Si concentration during aging process.

Funder

National Key R&D Program of China

Military-civilian integration project of Hebei Province

Provincial School Cooperation Fund of Hebei province

Key R&D Program of Hebei Province

Natural Science Foundation of Hebei Province

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3