Evaluation of performance characteristics of nano TiO2 and TiO2-ZnO composite for DSSC applications and electrochemical determination of potassium ferrocyanide using cyclic voltammetry

Author:

Deepa H AORCID,Madhu G M,Swamy B E Kumara

Abstract

Abstract Nanoparticles of TiO2 and TiO2-ZnO composite (2:1 molar ratio) were synthesized utilizing the sol-gel and solution combustion approaches, respectively. Scanning electron microscopic, energy dispersive x-ray, x-ray diffraction, UV-visible spectroscopy, and Brunauer–Emmett–Teller analysis were employed to characterize the synthesized nanoporous TiO2 and the composite of TiO2-ZnO nanoparticles. Fabrication of dye-sensitized solar cells (DSSCs) was carried out by incorporating the synthesized nanoporous materials coating on the photoanodes using the doctor blade technique. Nano TiO2 and the composite of TiO2-ZnO were also analyzed using cyclic voltammetry test, and their performance was compared for the electrochemical detection of potassium ferrocyanide. The composite of TiO2-ZnO exhibited better electrocatalytic activity in comparison with the pure TiO2 nanoparticles. The fabricated DSSCs by employing nano TiO2 particles and TiO2-ZnO composite as the semiconductor photoanode materials were compared for photovoltaic performance. The DSSC fabricated with TiO2 nanoparticles exhibited better photovoltaic performance with an efficiency of 2.22% and a current density of 4.152 mA cm−2 than that fabricated with TiO2-ZnO composite with an efficiency of 0.0022% and a short circuit current density of 0.014 mA cm−2.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference41 articles.

1. Dye sensitized solar cells-working principles, challenges and opportunities;Jasim;Solar Cells-Dye-Sensitized Devices,2011

2. Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends;Gong;Renew. Sustain. Energy Rev.,2017

3. Recent improvements in dye sensitized solar cells: a review;Sugathan;Renew. Sustain. Energy Rev.,2015

4. Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): a review;Kumar;Materials Science for Energy Technologies,2020

5. Dye-sensitized solar cells;Grätzel;J. Photochem. Photobiol. C,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3