Distinct impact of order degree on thermoelectric power factor of p-type full-Heusler Mn2VAl compounds

Author:

Li HezhangORCID,Hayashi KeiORCID,Dong Jinfeng,Li Jing-Feng,Miyazaki Yuzuru

Abstract

Abstract Full-Heusler compounds have three crystal structures with a different order degree; the highly ordered L21, partially disordered B2, and completely disordered A2 structures. To reveal the effects of the order degree on thermoelectric (TE) properties of the full-Heusler compounds, Mn2VAl samples with varied L21 and B2 order degrees are prepared by changing preparation conditions, and their Seebeck coefficients and electrical conductivities are measured in a wide temperature range. As the B2 order degree becomes higher, the Seebeck coefficient increases, leading to the increase of the power factor (PF). The maximum PF is 2.84 × 10−4 Wm−1 K−2 at 767 K for the Mn2VAl sample with the highest B2 order degree. This study demonstrates that the TE properties of Mn2VAl can be enhanced by increasing the fraction of the B2 phase. A relation between the Seebeck coefficient and crystal structures is also discussed based on the calculation of the electronic density of states of Mn2VAl with the L21 and B2 structures.

Funder

Scientific Research

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3