Numerical simulation study on solidification proceoss of titanium slab ingot by electron beam cold hearth melting

Author:

Cao Wei,Ma Chong,Li Yang,Gao LeiORCID,Chen GuoORCID,Omran Mamdouh

Abstract

Abstract Titanium and titanium alloys are key basic support materials in the field of engineering technology and high technology, and are widely used in the fields of natural gas transportation, chemical corrosion, and marine development. Titanium alloy ingots are often prepared with more solidification defects such as surface cracks and cold shuts, resulting in lower utilization of titanium metal and higher cost of titanium products. The root of this is the lack of in-depth knowledge of the ingot melting and casting process, and the failure to control the thermal conditions of the billet in the molding process within a reasonable range. In this study, based on the Lagrange Euler algorithm, combined with ProCAST finite element software to establish a numerical model, revealing the solid–liquid interface morphology, the length of the transition region, and the change rule of thermal stress under the influence of different process parameters in the solidification process of titanium slab ingot. The results show that with the increase in pulling speed, the depth of the solid–liquid phase line and the width of the mushy zone of slab ingot increase, and the length of the transition region grows. With the increase in casting temperature, the depth of the solid–liquid phase line of the slab ingot decreases, and the mushy zone gradually becomes narrower. The casting temperature and pulling speed are positively correlated with the value of the thermal stress equivalent stress in slab ingots, and the probability of cracks in the corners and ingot surface is higher. This study provides effective theoretical guidance for the realization of stable mass production of high-quality titanium slab ingot.

Funder

Academy of Finland

Science and Technology Major Project of Yunnan Province

Yunnan Fundamental Research Projects

financial support from the National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3