Impact of Al-doping on structural, electrical, and optical properties of sol-gel dip coated ZnO:Al thin films

Author:

Khlayboonme S TipawanORCID,Thowladda Warawoot

Abstract

Abstract Aluminum-doped ZnO (AZO) thin films were coated on glass substrates using the sol-gel dip-coating technique. We investigated the effect of Al-doping level on the surface morphology, crystal structure, atomic bonding, and optical and electrical properties of the AZO films. The Al-doping levels in the sol-gel solution were 0, 0.25, 0.50, 1.0, 1.5, and 3.0% with a Zn precursor concentration of 0.50 M. The results show that the grain boundary increased with the doping level, while the crystallite size decreased from 27.2 to 14.2 nm. The AZO films were subjected to tensile stress. The Al-doping levels ≤ of 1.5% encouraged the intensity of the (002) x-ray diffraction peak. The center of the (002) peak shifted from 34.46° to 34.51°, and that of the E 2 high Raman mode shifted from 435.0 to 432.4 cm−1. Doping with 1.5% Al resulted in a maximum electron concentration of 4.7 × 1018 cm−3 with a minimum resistivity of 2.6 × 10−1 Ω cm and a mobility of 5.14 cm2/V.s. The Urbach energy increased from 88 to 120 meV with increasing doping level. For the AZO films doped with Al (≤1.5%), the analysis of the UV–vis spectra reveals that the position of the conduction band (CB) minimum of the films shifted from −0.16 to −0.21 eV and shifted outward from the valence band (VB). Further Al doping to 3.0% resulted in a VB shift toward CB. The optical band gap reached a maximum of 3.33 eV at 1.5% Al. The combination of tensile stress and electron density due to Al doping influences the shift in the optical band gap of the AZO films. The crystal structure, atomic bonding, and electronic band structure of ZnO films can be modified by Al doping.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3