Abstract
Abstract
Inorganic nanoparticles have long been applied as catalysts and nanozymes with exceptional rate constants arising from their large surface areas. While it is understood that high surface area-to-volume ratios and low average atomic coordination are responsible for their exceptional catalytic properties, these facets remain under exploited in the design of gold nanoparticle catalysts and nanozymes. Here we have developed 3D, 2D, and quasi-1D gold nanoparticles for use as catalysts in reducing 4-nitrophenol by sodium borohydride. Each morphology was characterised with transmission electron microscopy and UV–vis absorption spectroscopy, while the highest catalytic activity was achieved when the perimeter-to-surface area, or amount of ‘edge’, was maximised. The particles were then applied as nanozymes in modular nano-composite hydrogels. Independent hydrogel tiles containing either the substrate or catalyst were bonded in stacks, which allowed reagent transport across their interface for the colourimetric detection of hydrogen peroxide. This work presents novel insight into the catalytic activity of low-dimension nanoparticles and their potential application in nanozyme-based diagnostic devices.
Funder
The Wellcome Trust
National Institute for Health Research
University of Leeds
Engineering and Physical Sciences Research Council
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献