Abstract
Abstract
Active electrocatalysts are the key to water splitting for hydrogen production through the electrolysis. In this paper, 50 nm silver nanoplates were used as templates for synthesis of Au–Ag island-shaped nanoplates by controlling the surface chemistry. The guiding mechanism of polyvinylpyrrolidone (PVP, Mw = 40 000) to Au–Ag island-shaped nanoplates crystal was also further investigated. It is found that the surface energy of Ag nanoplates between (100) and (111) crystal planes can be regulated by varying the amount of PVP in the system. Then a uniform Au-Ag triangular island nanostructure was obtained. Compared with the Ag nanoplates catalysts, the Au–Ag island nanoplates catalysts show the superior catalytic performances in hydrogen evolution electrocatalysis (HER). These results demonstrate a new surface chemistry modification by PVP and a galvanic displacement reaction for designing the active electrocatalysts. More importantly, the Au–Ag island-shaped nanoplates show an unconventional growth mode of preserving the original Ag nano-triangular crystal structure. The enhanced performance in electrocatalysis can be mainly attributed to Au–Ag alloy structure, which allows the appearance of synergistic effects. The present work demonstrates the crucial roles of surface chemistry in catalysts synthesis, which may guide the design of active bimetallic catalysts.
Funder
Hong Zhao
Natural Science Fund of Jiangsu Province
the Priority Academic Program Development of Jiangsu Higher Education
The Chongqing Scientific and Technological Program Project of China
The science and technology research program of Chongqing Municipal Education Commission
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献