Flow behaviour and constitutive modeling for hot deformation of austenitic stainless steel

Author:

Gao FeiORCID,Liu Wanchun,Zhu Qiyong,Gao Zilong,Misra Raja Devesh Kumar,Liu Zhenyu,Yu Fuxiao

Abstract

Abstract The flow behavior of 316H austenitic stainless steel is investigated using hot compression tests. The modified Johnson-Cook and Zerilli-Armstrong models are developed, and modified Arrhenius-type model is established using an approach by dividing low and high stress region for determining key material constant and an uncomplicated approach for compensating strain in which the activation energy is determined from peak stress and only other material constants are considered as strain-dependent constants. The performance of all developed constitutive models is comparatively analyzed. It is indicated that the significant sensitivity of flow stress to temperature and strain rate is exhibited, and at 900 and 950 °C, strain rate sensitivity is closely related to temperature and strain rate, which can be explained by low stacking fault energy for 316H austenitic stainless steel. The modified Arrhenius type model has a noticeably higher accuracy in predicting flow behaviour than other two developed models in spite of a good performance of all developed models according to visual examination and statistical analyses.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3