Thin-film coating; historical evolution, conventional deposition technologies, stress-state micro/nano-level measurement/models and prospects projection: a critical review

Author:

Mbam Stephen OgbonnaORCID,Nwonu Sunday Emmanuel,Orelaja Oluseyi Adewale,Nwigwe Uzoma Samuel,Gou Xiao-FanORCID

Abstract

Abstract Several modern cutting edge technologies, including the superconducting technology, green energy generation/storage technology, and the emerging 5G networks technology, have some form of thin-film coatings. Hence, this critical review showcased the historical evolution, conventional deposition technologies with its application areas, growth modes, specific thin-film stress-state micro/nano-level measurement and models, and prospects projection of thin-film coatings. Specifically, the authors included simple schematics of the primary thin-film coating methods (chemical vapor deposition and physical vapor deposition methods), growth modes, residual stress evolution behavior from valuable up to date models to enhance in-depth understanding of the underlying principles of thin-film coatings techniques and challenges. Also, the authors pointed out specific deficiencies in the reported thin-film stress measurement/models approaches. It is scientifically shown that no coating technique or model has superior results in all scenarios, selecting a suitable coating technique or model depends on the targeted materials and functions of the thin-film system. According to the evaluated reports, the societal demand and specific challenge in the fabrication/applications of thin-film systems indicated that thin-film coatings and its associated challenges would remain vibrant and active research areas for periods far into the future. Thus, this report would serve as a guide and reference material for potential researchers in these areas for a considerable time.

Funder

the Fundamental Research Funds for the Central Universities

The Funds of the National Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3