Study on friction and wear behavior of gray cast iron with different carbon content at different temperatures

Author:

Chen TiefangORCID,Wang Chenggang,Yan Ruifang,Li Feng,Wang Jiandong,Wang Jinguo

Abstract

Abstract In this paper, we study the friction and wear properties of gray cast iron with different carbon contents at various ambient temperatures. We also examine the failure forms of gray cast iron friction and wear. The research concludes that under low-temperature wear conditions, the graphite in the gray cast iron structure can enter into the interface between the friction pair, have a lubricating effect on the wear surface, and reduce the friction coefficient and wear loss of the gray cast iron material. As the graphite content in the gray cast iron structure increases, its lubrication and protection effects enhance. Consequently, the primary cause of wear failure in gray cast iron is fatigue peeling induced by plastic deformation. Under high-temperature wear conditions, an oxide layer gradually forms on the wear surface. As the experimental temperature increases, the thickness of the oxide layer on the wear surface also increases. When the oxide layer formed on the wear surface reaches a certain level of thickness, the internal expansion stress of the oxide layer increases considerably, causing the oxide layer to peel off and increase the roughness of the wear surface, friction coefficient, and wear loss. Additionally, an increase in the graphite content in the gray cast iron structure makes the surface more prone to oxidation. This leads to increased friction coefficient and wear loss, with the wear failure of gray cast iron primarily caused by the peeling of the oxidation layer.

Funder

Department of Science and Technology of Jilin Province

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3