Anderson localization and Brewster anomaly of electromagnetic waves in randomly-stratified anisotropic media

Author:

Kim KihongORCID,Kim Seulong

Abstract

Abstract Anderson localization of p-polarized waves and the Brewster anomaly phenomenon, which is the delocalization of p-polarized waves at a special incident angle, in randomly-stratified anisotropic media are studied theoretically for two different random models. In the first model, the random parts of the transverse and longitudinal components of the dielectric tensor, between which the longitudinal component is the one in the stratification direction, are assumed to be uncorrelated, while, in the second model, they are proportional to each other. We calculate the localization length in a precise way using the invariant imbedding method. From analytical considerations, we provide an interpretation of the Brewster anomaly as a phenomenon arising when the wave impedance is effectively uniform. Similarly, the ordinary Brewster effect is interpreted as an impedance matching phenomenon. We derive the existence condition for the Brewster anomaly and concise analytical expressions for the localization length, which are accurate in the weak disorder regime. We find that the Brewster anomaly can arise only when disorder is sufficiently weak and only in the second model with a positive ratio of the random parts. The incident angle at which the anomaly occurs depends sensitively on the ratio of the random parts and the average values of the tensor components. In the cases where the critical angle of total reflection exists, the angle at which the anomaly occurs can be either bigger or smaller than the critical angle. When the transverse and longitudinal components are uncorrelated, localization is dominated by the the transverse component at small incident angles. When only the longitudinal component is random, the localization length diverges as θ −4 as the incident angle θ goes to zero and is also argued to diverge for all θ in the strong disorder limit.

Funder

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3