Abstract
Abstract
Low-power, flexible, and properly encapsulated integrated circuits are the basic requirements of the solution-processed printed and wearable electronic prototypes for various emerging applications including display circuits, sensors, and radio-frequency identification tags. The organic field-effect transistor is one of the important types of devices used in such prototypes and its industrial applicability is essential for the printed electronics technology. The performance deterioration upon encapsulated through the thick layer of air-stable dielectric material such as amorphous fluoropolymer [CYTOP] - must be compensated by device engineering. In this work, we used furan and thiophene flanked diketopyrrolopyrrole donor-acceptor conjugated polymers namely PDPPF-DTT and PDPPT-DTT, and its comparative study was performed using Cytop as a dielectric material. The work advances interface engineering towards the single-gate and dual-gate organic transistors. Dual-gate transistors performance modulation using Cytop dielectric opens new research avenues towards stability enhancement of such transistors for real-world applications.
Funder
CRC for Polymers, Central Analytical Research Facility
QUT
Institute of Future Environments, Queensland University of Technology
AISRF
Australian Research Council
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献