Single and dual-gate organic field-effect transistors based on diketopyrrolopyrrole-diethienothiophene polymers: performance modulation via dielectric interfaces

Author:

Patil Basanagouda BORCID,Takeda YasunoriORCID,Singh SubhashORCID,Singh Amandeep,Do Thu Trang,Ostrikov Kostya (Ken)ORCID,Singh Samarendra PORCID,Tokito Shizuo,Pandey Ajay K,Sonar PrashantORCID

Abstract

Abstract Low-power, flexible, and properly encapsulated integrated circuits are the basic requirements of the solution-processed printed and wearable electronic prototypes for various emerging applications including display circuits, sensors, and radio-frequency identification tags. The organic field-effect transistor is one of the important types of devices used in such prototypes and its industrial applicability is essential for the printed electronics technology. The performance deterioration upon encapsulated through the thick layer of air-stable dielectric material such as amorphous fluoropolymer [CYTOP] - must be compensated by device engineering. In this work, we used furan and thiophene flanked diketopyrrolopyrrole donor-acceptor conjugated polymers namely PDPPF-DTT and PDPPT-DTT, and its comparative study was performed using Cytop as a dielectric material. The work advances interface engineering towards the single-gate and dual-gate organic transistors. Dual-gate transistors performance modulation using Cytop dielectric opens new research avenues towards stability enhancement of such transistors for real-world applications.

Funder

CRC for Polymers, Central Analytical Research Facility

QUT

Institute of Future Environments, Queensland University of Technology

AISRF

Australian Research Council

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3