Current status of Pb-free PSCs and infer the highest achievable PCE via numerical modeling, and optimization of novel structure FAMASnGeI3 based PSCs

Author:

Hamzah Hairul Mardiah,Miah Md HelalORCID,Hossen Md Jakir,Soin Norhayati Binti,Abdul Wahab Yasmin,Khandaker Mayeen Uddin,Aminul Islam Mohammad

Abstract

Abstract In this study, we have extensively investigated an eco-friendly perovskite-based solar cell via a theoretical approach and numerical simulation. For that purpose, firstly, we have conducted a brief literature review to decipher the status of Pb-free perovskite solar cells (PSCs). The literature review reflects that the research on Pb-free PSCs is going on with immense interest. By acquiring inspiration from the literature review, we have designed a Pb-free hybrid PSC with a structure of FTO/CdS/FAMASnGeI3/NiO/Ag utilizing SCAPS-1D software. The structure has been optimized by fine-tuning the thickness, and defect density of the light-absorbing layer and the thickness, donor density, and band gap of ETL. The optimized structure of Pb-free perovskite material displays promising results with PCE of 30.05 %, Voc of 0.964 V, fill factor of 82.35%, and current density of 27.77 mA cm−2. In addition, we have also found that the temperature and light intensity play a crucial role in the performance of the proposed PSC. We have found quantum efficiency as high as 98% for 360 nm thickness of the perovskite absorber layer. Finally, from the dark J–V analysis, lower current density (6.73×10−8 mA cm−2), less series resistance (2.8×10−5 Ωcm2) as well as high shunt resistance (11412.67 Ωcm2) were witnessed, which is expectable for a promising solar cell. Our inclusive exploration unveiled the fact that the suggested novel architecture (FTO/CdS/FAMASnGeI3/NiO/Ag) can be considered an exceptional design for PSCs with greater efficiency and practical suitability.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3