A zero-shot learning for property prediction of wear-resistant steel based on Multiple-source

Author:

Liu YuanORCID,Wei Shi-Zhong,Jiang Tao,Yu Hua

Abstract

Abstract In order to address the scarcity of C-Cr-V-Mo steel samples, a zero-shot transfer component analysis (TCA) based on multi-source is proposed. TCA maps the features of multiple sources composed of different kinds of wear-resistant steels and target domain to the reproducing kernel Hilbert spaces (RKHS). And the proposed fitness parameter α derived from the maximum mean discrepancy (MMD) allows multiple sources to affect the prediction to varying degrees. The support vector regression (SVR) model, established after TCA, can then predict the hardness without homologous samples. The matrix is rapidly predicted by the minimum distance from the sample to the cluster centers of matrix. The (Cr+V)/C, V/Cr and predicted hardness are added to feature space and the abrasion loss of samples quenched at high temperature are predicted using these quenched at low temperature. Experiments show that the multi-source based TCA+SVR model improves the prediction accuracy of hardness of C-Cr-V-Mo steel with R of 0.98 and MAE less than 1.4HRC under zero-shot condition. The primary matrix is quickly identified as martensite. The abrasion loss is mostly effected by hardness, (Cr+V)/C and V/Cr, which is predicted with R of 0.95, MAE of 5.23 mg.

Funder

Longmen Laboratory Frontier Exploration Topics

Special Project of Industrial Foundation Reconstruction and High-quality Development of Manufacturing Industry in 2021

Natural Science Foundation of Henan

Special Project of Industrial Foundation Reconstruction and High-quality Development of Manufacturing Industry in MIIT

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3