Abstract
Abstract
Bamboo strips extracted from Phyllostachys viridiglaucescens, grown in Europe, were analysed to assess their thermal and mechanical properties for composites application. Thermal stability of the European bamboo was studied by Thermogravimetric Analysis (TGA) and compared to the one of species grown in Oceania. An evolution of the chemical composition along the radial direction of the Phyllostachys bamboo was identified by TGA. The inner part of culms shows a higher proportion of hemicelluloses, while the percentage of crystalline cellulose is higher in the outer portion. This evolution of the composition was used to interpret the original data recorded by Dynamic Mechanical Analysis (DMA) of the strips. Glassy tensile modulus founded by DMA increases from the inner part of the culm (6.8 GPa) to the outer part (9.9 GPa). The variation of the cellulose content along the radius of the bamboo culm is related to this increase and shows a good correlation with thermal behaviour. The dynamic relaxations in the shear mode reveal the existence of two secondary relaxation modes sensitive to water. In the order of increasing temperatures, they have been assigned to the mobility of methylol groups and to heterogeneities of the polymeric matrix. By combining Differential Scanning Calorimetry (DSC) and DMA, the response of the viscoelastic transition of bamboo strips, at 210 °C, was evidenced for the first time. Bamboo strips behave as a unidirectional composite reinforced by technical fibres; its particularly high shear glassy modulus (2.3 GPa) deserves to be emphasised.
Funder
Région Occitanie Pyrénées-Méditerranée
Bpifrance
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献